Windows Theano GPU 版配置
|
因为自己在上Coursera的Advanced Machine Learning,里面第四周的Assignment要用到PYMC3,然后这个似乎是基于theano后端的。然而CPU版TMD太慢了,跑个马尔科夫蒙特卡洛要10个小时,简直不能忍了。所以妥妥换gpu版。 为了不把环境搞坏,我在Anaconda里面新建了一个环境。(关于Anaconda,可以看我之前翻译的文章) Conda Create -n theano-gpu python=3.4 (theano GPU版貌似不支持最新版,保险起见装了旧版) conda install theano pygpu 这里面会涉及很多依赖,应该conda会给你搞好,缺什么的话自己按官方文档去装。 然后至于Cuda和Cudnn的安装,可以看我写的关于TF安装的教程 和TF不同的是,Theano不分gpu和cpu版,用哪个看配置文件设置,这一点是翻博客了解到的: .theanorc.txt 文件内容: [global] openmp=False device = cuda floatX = float32 base_compiler = C:Program Files (x86)Microsoft Visual Studio 12.0VCbin allow_input_downcast=True [lib] cnmem = 0.75 [blas] ldflags= [gcc] cxxflags=-IC:UserslyhAnaconda2MinGW [nvcc] fastmath = True flags = -LC:UserslyhAnaconda2libs compiler_bindir = C:Program Files (x86)Microsoft Visual Studio 12.0VCbin flags = -arch=sm_30 注意在新版本中,声明用gpu从device=gpu改为device=cuda 然后测试是否成功: from theano import function,config,shared,tensor
import numpy
import time
vlen = 10 * 30 * 768 # 10 x #cores x # threads per core
iters = 1000
rng = numpy.random.RandomState(22)
x = shared(numpy.asarray(rng.rand(vlen),config.floatX))
f = function([],tensor.exp(x))
print(f.maker.fgraph.toposort())
t0 = time.time()
for i in range(iters):
r = f()
t1 = time.time()
print("Looping %d times took %f seconds" % (iters,t1 - t0))
print("Result is %s" % (r,))
if numpy.any([isinstance(x.op,tensor.Elemwise) and
('Gpu' not in type(x.op).__name__)
for x in f.maker.fgraph.toposort()]):
print('Used the cpu')
else:
print('Used the gpu')
输出: [GpuElemwise{exp,no_inplace}(<GpuArrayType<None>(float32,vector)>),HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping 1000 times took 0.377000 seconds
Result is [ 1.23178029 1.61879349 1.52278066 ...,2.20771813 2.29967761
1.62323296]
Used the gpu
到这里就算配好了 然后在作业里面,显示Quadro卡启用 但是还是有个warning WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions. 这个真不知道怎么处理 然后后面运行到: with pm.Model() as logistic_model:
# Since it is unlikely that the dependency between the age and salary is linear,we will include age squared
# into features so that we can model dependency that favors certain ages.
# Train Bayesian logistic regression model on the following features: sex,age,age^2,educ,hours
# Use pm.sample to run MCMC to train this model.
# To specify the particular sampler method (Metropolis-Hastings) to pm.sample,# use `pm.Metropolis`.
# Train your model for 400 samples.
# Save the output of pm.sample to a variable: this is the trace of the sampling procedure and will be used
# to estimate the statistics of the posterior distribution.
#### YOUR CODE HERE ####
pm.glm.GLM.from_formula('income_more_50K ~ sex+age + age_square + educ + hours',data,family=pm.glm.families.Binomial())
with logistic_model:
trace = pm.sample(400,step=[pm.Metropolis()]) #nchains=1 works for gpu model
### END OF YOUR CODE ###
这里出现的报错: GpuArrayException: cuMemcpyDtoHAsync(dst,src->ptr + srcoff,sz,ctx->mem_s): CUDA_ERROR_INVALID_VALUE: invalid argument 这个问题最后github大神解决了: trace = pm.sample(400,step=[pm.Metropolis()]) #nchains=1 works for gpu model 加上nchains就好了,应该是并行方面的问题 trace = pm.sample(400,step=[pm.Metropolis()],nchains=1,njobs=1) #nchains=1 works for gpu model 另外 plot_traces(trace,burnin=200) 出现pm.df_summary报错,把pm.df_summary 换成 pm.summary就好了,也是github搜出来的。 (编辑:鄂州站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |
- Windows 8 C# – 将网页源检索为字符串
- xaml – Windows 8 App,更改BackButtonStyle的颜色
- Windows Mobile 6.5手势和C#2.0应用程序
- 如何减少Windows Azure网站上托管的Orchard CMS站点的内存消
- .net – 创建大量定制的Windows安装程序?
- Windows – Win32命名管道和邮件大小限制 – 旧的64K限制仍
- .net – System.Windows.Forms.WebBrowser:强制X86?
- IE11 For Win7、win2008中文版官方下载地址
- windows – 为什么输出传输时某些“for”命令不起作用?
- resolveLocalFileSystemURI错误代码5 windows phone 7 phon
